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The topology of the organized motion has been obtained in the slightly heated 
self-preserving far wake of a circular cylinder a t  a Reynolds number, based on the 
cylinder diameter, of about 1200. In a frame of reference moving with the organized 
motion, the toplogy in the plane of main shear reduces to a succession of centres and 
saddles, located at about the wake half-width. Centres are identifiable by large values 
of spanwise vorticity associated with the coherent large-scale motion. Saddles occur 
at the intersection of converging and diverging separatrices, the latter being 
identifiable with the high strain rate due to the large-scale motion. Large values of 
the longitudinal turbulence intensity associated with the smaller-scale motion occur 
at the centres. High values of the normal and shear stresses, the temperature variance 
and heat fluxes associated with the large-scale motion occur on either side of each 
saddle point along the direction of the diverging separatrix. Contours for the 
production of energy and temperature variance associated with the small-scale 
motion are aligned along the diverging separatrices, and have maxima near the saddle 
point. Contours for one component of the dissipation of small-scale temperature 
variance also have a high concentration along the diverging separatrix. Flow 
visualizations in the far wake suggest the existence of groups of three-dimensional 
bulges which are made up of clusters of vortex loops. 

1. Introduction 
Coherent structures in the turbulent near-wake of a circular cylinder have been 

studied (e.g. Cantwell & Coles 1983; Hayakawa & Hussain 1985; Kiya & Matsumura 
1985) using conditional sampling and averaging techniques. The emphasis in all these 
studies has been on the topology of the structures: in a frame of reference moving 
with the structures, conditionally averaged velocity vectors in the plane of main shear 
show a pattern of critical points such as centres and saddles. Generally, this approach, 
which is based on the assumption of similarity in time (Cantwell 1979), provides a 
framework for a unified description of coherent structures in different turbulent shear 
flows or in different regions of the same turbulent shear flow. 

The existence of coherent structures in the far wake (typically for distances greater 
than about 100d, where d is the cylinder diameter) has been established by flow 
visualization (e.g. Taneda 1959; Keffer 1965; Papailiou & Lykoudis 1974; Cimbala 
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1984, 1985) or by hot-wire measurements (e.g. Grant 1958; Keffer 1965; Townsend 
1979; Mumford 1983). Although there is a general consensus that these structures 
are part of a secondary vortex street, distinguishable from the near-wake Karman 
vortex street, there is a lack of agreement on the mechanism responsible for the 
formation of the far-wake coherent structures. Whereas the flow visualization of 
Papailiou & Lykoudis (1974) suggested a possible residual influence of the Karman 
street in the far wake, Budny, Kawall & Keffer (1979) found no measurable 
frequcncy-centred activity attributable to the Karman street beyond about 65 
cylinder diameters. Matsui & Okude (1981, 1983) proposed that the far-wake 
structures are formed as a result of the amalgamation of the near-wake Karman 
vortices. The flow visualization of Wlezien (1981) suggested that the far-wake 
structures are a result of local instabilities in the mean shear and are not directly 
related to the near wake. Cimbala (1984, 1985) also indicated that the far-wake 
structures result from a hydrodynamic instability of the mean wake profile, quite 
independently of the near-wake vortices. Wygnanski, Champagne & Marasli (1  986) 
have shown that vorticity contours obtained for the far wake using linear stability 
theory are not inconsistent with experimental observations. It has been shown that 
far-wake-type structures occur in flows with no near-wake Karman vortices (see, for 
example, Cimbala 1984, 1985; Ferre i Vidal 1986). However, Bevilaqua & Lykoudis 
(1978) and Wygnanski et al. (1986) suggest that  the behaviour of self-preserving wakes 
depends on the initial conditions, for example, the presence or lack of periodicity in 
the near wake. Ferre i Vidal noted that although the self-preserving region of the 
wake is dominated more by entrainment and engulfment than by initial conditions, 
the latter can still exert some influence on the downstream development of the flow. 

Lumley (1981) noted that important differences have been found between 
structures in the initial and fully developed regions of various turbulent shear flows. 
Regardless of the precise manner in which the far-wake structures originate, the 
available evidence suggests that  there may be differences between these structures 
and those in the near wake. It is generally assumed (the evidence is not conclusive) 
that  the near-wake structures are essentially two-dimensional, while the three- 
dimensionality of the far-wake structures has been discussed by Barsoum, Kawall 
& Keffer (1978) and Cimbala (1984). Flow visualizations (e.g. Taneda 1959; Keffer 
1965; Cimbala 1984, 1985) indicate that the far-wake structures occur irregularly in 
space and time, with a tendency to  appear in groups, in contrast to the more 
deterministic, if not periodic, appearance of the near wake. Our photograph, figure I ,  
shows both the near wake and part of the far wake of a cylinder. The wake is made 
visible by injecting white dye (rhodorsil) near the rear stagnation point of the 
cylinder. The Reynolds number (R ,  = 480, where R, = U ,  d l v ,  U ,  is the free-stream 
velocity and v is the kinematic viscosity of the fluid) is sufficiently large for the wake 
to be ‘turbulent’ (e.g. Cimbala 1985 considers the wake to be turbulent if R, 2 160). 
The Karman street, visible in the near wake, tends to become disorganized relatively 
quickly (it disappears at about 40d) but some organization reappears further 
downstream in the form of bulges, identified by strong dye concentrations. The bulges 
often appear in groups and are often antisymmetrical about the centreline. 

The main aim of the present study is to  provide a detailed topological description 
of the far-wake coherent structures, in the plane of main shear. The focus is on the 
groups of antisymmetrical structures that have been identified in flow visualizations 
and in other studies (e.g. Townsend 1979; Mumford 1983; Browne, Antonia & Bisset 
1986) in the far wake. The wake-generating cylinder was heated so that temperature 
could be used, as in the plane-jet study of Antonia et al. (1986), for detecting coherent 
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FIGURE 1.  Photograph, in the (z, y)-plane, of a wake in the range 0 6 x/d 6 180. R, = 430. 
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structures. The introduction of temperature in the flow also allows a comparison to  
be made between velocity and temperature fields, this being the second aim of this 
study. This comparison is quantified in the context of contributions that the selected 
structures make to the average transfers of momentum and heat. A third aim of this 
study is to provide some insight into the physical nature of the structures by relating 
wind-tunnel measurements to the patterns obtained by flow-visualization techniques 
in a water tunnel. 

2. Experimental details 
The wind tunnel used was a non-return blower-type facility with a working section 

350 x 350 mm, 2.4 m long. Measurements were made with zero pressure gradient a t  
a distance of 420 diameters downstream of a circular cylinder (d  = 2.67 mm, aspect 
ratio = 131) and a Reynolds number R, x 1200 (the free-stream velocity Ul was 
nominally 6.7 m/s). The cylinder was heated (100 W) so that temperature was a 
passive marker of the self-preserving region of the flow. Full details of the tunnel are 
given in Browne & Antonia (1986), while the two experimental arrangements that 
were used are described in detail in Browne et al. (1986) and only a brief description 
is given here. 

I n  the first arrangement, four cold wires with a Az* span of 1.8 and an 
X-probe/cold-wire assembly, located a t  the centre of this span, formed an integral 
part of the same rake (a total of seven wires) which was traversed across the wake 
from y* = -2 to y* = + 1.6. Here, the asterisk denotes normalization by the 
half-width L = 12.3 mm; when it appears in association with a velocity or a 
temperature it will denote normalization by a velocity scale U,  = 0.36 m/s, the mean 
velocity defect on the wake centreline, and a temperature scale T, = 0.82 K, the mean 
temperature excess on the centreline relative to the free-stream temperature Tl. The 
fixed rake used in the second arrangement consisted of four cold wires spanning a 
distance Az* = 0.82 at y* = - 1.22. The X-probe/cold-wire combination, located 
centrally in the z-direction with respect to the four cold wires, was moved from 
y* = - 0.77 to y* = + 1.22. The signals from the fixed rake of cold wires in this second 
arrangement were used for detection and, by comparing with the detections obtained 
from the single movable cold wire in that arrangement, the y* variation of the 
temperature-front positions could be obtained. Data from the first arrangement were 
used for the y* positions not covered by the second arrangement. 

All cold wires were made of 0.63 pm diameter PtrlO% Rh Wollaston and had 
an active length of 1 mm. They were operated with in-house constant current 
(= 0.1 mA) circuits. The hot wires of the X-probe were made of 5 pm diameter 
Pt-10 yo Rh with an active length of 0.85 mm, separated by 0.8 mm. The cold wire 
associated with the X-probe was placed 0.5 mm in front of the centre of the X-probe 
and perpendicular to the plane of the probe. The hot wires were operated with 
constant-temperature circuits at an overheat of 1.8. Velocity, yaw and temperature 
calibrations were carried out using an HP computer and data acquisition system with 
a sampling frequency of 10Hz. This computer was also used to monitor the 
performance of all wires during the experiments. The fluctuating voltages from all 
wires were low-pass filtered at 1 kHz and sampled a t  2 kHz per channel into a 
PDP 11/34 computer using an 11 bit plus sign sample and hold A/D unit. Subsequent 
processing of the data was made on either the 11/34 or a VAX 11/780. 

As a result of heating the cylinder, it may be argued that fluid elements heated 
by the cylinder are affected by buoyancy over the total time required for them to 
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be convected to the far wake. However, at xld = 420, the ratio Gr/Ri, where Gr is 
the Grashof number, defined by Gr = g L 3 ~ / v 2 ~ ,  is 9 x If the lengthscale x ,  the 
distance from the source of heating, is used instead of L, the value of Gr/Ri  is 
8 x quite small enough to support the claim that temperature acts as a passive 
marker of the far wake. Also, measured mean velocity and mean temperature profiles 
over a distance 200 5 x l d  5 700 showed good symmetry about virtually the same 
centreline. Further, as noted in Browne & Antonia (1986), conventional statistics of 
the longitudinal velocity fluctuation u,  the lateral velocity fluctuation v and the 
product uv obtained with an X-wire at x l d  = 420 were the same, irrespective of 
whether the cylinder was heated or not. 

The Institut de MQcanique Statistique de la Turbulence’s water tunnel at the 
Universitk d’ Aix-Marseille was used for the flow visualizations and has been described 
in detail by Dumas, Bonmarin & Fulachier (1982). The cylinder (d  = 3 mm) was 
inserted centrally across the flow 30 cm downstream of the beginning of the 
20 x 20 cm working section. The cylinder was hollow to enable the injection of dye 
close to the rear stagnation point midway between the working-section walls. Dye 
could also be injected in the tunnel contraction upstream of the working section via 
two small tubes (0.2 mm diameter) at  x l d  = 180. Photographs in the (2,  y)-planes 
were taken with the use of flash lighting and by illuminating a narrow (0.5 cm wide) 
section of the flow. Reynolds numbers of 280 and 430 were used, corresponding to 
values of U, of 9.3 and 14.3 cm/s respectively. These Reynolds numbers are larger 
than the value of about 160 at which the wake is considered to be ‘turbulent’ (e.g. 
Cimbala 1985). 

3. Conditional averages 
3.1. DeJinitions 

A quantitative discussion of coherent structures requires the introduction of a 
conditional average, defined in $3.2, which can be obtained once the structures are 
identified. Denoting this average by angular brackets, any instantaneous variable 
F ( = U ,  V or T) can be expressed by the double decomposition (e.g. Hussain 1983) 

F = (F)+F, .  (1) 

The component 4 has been described in previous studies as that part of F associated 
with the random, or sometimes, incoherent motion. Neither random nor incoherent 
seems appropriate, especially in view of the relatively organized spatial distributions 
of (q) (e.g. Cantwell & Coles 1983). With (F) identifiable with the large-scale 
motion, it seems reasonable to associate Fs with the remaining smaller-scale motion, 
noting that the values obtained for F, are determined as much by the smaller-scale 
motion’s phase relationship with the large-scale motion as by its magnitude. 

An alternative approach is to interpret F, using a triple decomposition (e.g. 
Hussain 1983), as the sum of a global mean F (the overbar denotes an average over 
time), a perturbation P due to the large-scale motion, and the small-scale contribution 
F, : 

When conditional averaging is applied to (2), the result, on the assumption that the 
small-scale and large-scale motions are uncorrelated is 

F = P+P+F,.  (2) 

( F )  = P + P .  (3) 
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FIGURE 2. Simultaneous temperature and velocity signals obtained with a rake of wires aligned 
in the spanwise direction at y* = - 1.42. The five upper traces are temperature signals (0,-0,) while 
the two lower traces are velocity signals u and u obtained with a n  X-probe immediately downstream 
of the cold wire which provides signal Os. The vertical scale is arbitrary. The traces are shown for 
a duration of 0.127 s. Temperature fronts are identified by arrows. 

The perturbation P is thus seen as the difference between the conditional average 
of F and its global mean. 

The double decomposition (1) tends to give greater emphasis to the large-scale 
motion than the triple decomposition (2), in which P i s  superposed on a global or mean 
motion. Cantwell & Coles (1983) used both double and triple decompositions but 
noted that the double decomposition was more appropriate for studying the coherent 
motion in the near wake. Hayakawa & Hussain (1985) used a double decomposition 
to present measurements in the range 10d4Od downstream of a circular cylinder. 
Kiya & Matsumura (1985) used a triple decomposition to present measurements a t  
a distance 8d from the cylinder. I n  the present work, we make use of both (1)  and 
(2): whereas (1) focuses on the coherent motion more appropriately than (2), the use 
of (2) permits an assessment to be made of the relative contributions to the Reynolds 
stresses and heat fluxes from the large-scale and small-scale motions. It is in this sense 
that the triple decomposition was used by Antonia et al. (1986) and Browne et al. 
(1986). Using the conventional Reynolds decomposition 

F = F + F ,  (4) 

F = P+F,,  
where F is the conventional turbulent fluctuation. Using (2),  F may be written as 

i.e. F can be thought of as the sum of the perturbation due to the large-scale motion 
and a small-scale contribution. The Reynolds-averaged stresses and heat fluxes can 
be expressed as 

where F and G represent either U ,  V or T. 
F" = %+m, (5) 
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FIGURE 3. Velocity vectors relative to an observer moving right to left with a convection velocity 
U ,  = 0.97U1. In this and subsequent figures, C and S denote centres and saddles respectively, while 
arrows identify diverging separatrices. 

3.2.  Formation of conditional averages 
Since all averages were formed on the computer from digital time series, it  is 
appropriate to define our conditional average (F) within this context. The time series 
representing F comprises Nequally spaced values I$ ( j  = 1, . . . , N). Ifj ,  ( i  = 1,2 ,  . . . , n )  
are values of j a t  which detections occur, then the conditional average of F 
corresponding to  a total number n of detections is given by 

where k is the distance from j,, expressed as a number of data points. 
The detection scheme which yields the values of ji, (6), has been described in 

Browne et al. (1986). Briefly, it consists of an algorithm for identifying tempcrature 
fronts in the rake temperature signals, such as shown in figure 2. The fronts are 
characterized by a relatively sharp decrease in temperature occurring almost 
simultaneously on all the rake signals. A modified VITA detection process was used 
in which the VITA criteria, relating to  the variance and sign change of data in a 
movable window, were applied to  a signal obtained by averaging the cold-wire signals. 
Also a shape check was used to  ensure, for the averaged signal, that the data leading 
up to  the change and the data after the change should not have a rapidly changing 
mean. The probability density function of the time difference At between consecutive 
detections, obtained at any particular value of y*, was maximum when 
(Uc A t ) / L  = 3.4 (in general, times are converted to distances by multiplying with U,, 
an average convection velocity of the structures, discussed later). Similarly, when the 
movable probe was a t  y* > 0 and the fixed rake was a t  y* < 0, the probability density 
function of At for detections in the temperature signal from the movable probe, 
relative to  detections in the fixed-rake signals, was maximum when (Uc At)/,!, z 1.7.  
Therefore, the data for y* < 0 were searched to  find detections which were simul- 
taneously preceded and followed by detections with time delays of f 3.4, while for 
y* > 0 the data were searched for fixed rake detections that were preceded and 
followed by movable-probe detections with time delays of z f 1.7. There were about 
500 ( =  n )  groups of three detections for each y* location (fewer for the largest (y*l 
values), and taken together, the resulting conditional averages yield the anti- 
symmetrical arrangement of structures used in our further analysis. 

The average frequency of occurrence of the structures was about 130Hz at 
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x/d = 420. This corresponds to about 0.3 of the cylinder Strouhal frequency. This 
structure frequency decreased approximately linearly from x/d = 180 to x/d = 800. 
Correspondingly the ratio of the average wavelength of the far-wake structures 
to the wavelength of the Karman vortex street increased almost linearly with x/d. 
Details of this variation are given in Antonia, Browne & Fulachier (1987). 

4. Topology of structures 
4.1. Velocity vectors 

The velocity-vector plot in figure 3 was obtained in a manner fully described in 
Antonia et al. (1986) for a jet and in Browne et al. (1986) for a wake. It is similar to 
that used in the near-wake studies (Cantwell & Coles 1983; Hayakawa & Hussain 
1985; Kiya & Matsumura 1985). Once (77) and ( V> are estimated, the corresponding 
velocity vect,or in the (2, y)-plane can be displayed in a frame of reference moving 
with a velocity U,. Cantwell (1979) and Coles (1982) emphasized the importance of 
selecting U, correctly since in general the pattern of streamlines or particle paths will 
depend on U,. There is considerable dispersion in reported estimates of U, in the near 
wake: 0.755U1 (Cantwell & Coles 1983), 0.875U1 (Hayakawa & Hussain 1985) and 
0.92U, (Kiya & Matsumura 1985). One would however expect the dispersion to be 
smaller in the far wake since the mean velocity defect decreases as x/d increases. At  
x/d = 420, a range of U, values was tried and for each U,, conditional velocity 
vectors, obtained relative to an observer moving at a velocity of U,, were obtained. 
When these velocity vectors were plotted, the average centreline of the resulting 
structures appeared to be a t  y* = 0.9 with a corresponding U, of 6.52 m/s or 0.97U1. 

Conditional velocity vectors, obtained relative to an observer moving with this U,, 
are shown in figure 3 in the plane Ax* vs. y*. In figure 3, Ax* = - (7Uc) /L ,  where 7 
is the time measured from the detection instants. Positive values of Ax* refer to 
locations downstream of the detection locations (or times earlier than the instants 
of detection). The same scales are used for Ax* and y* to avoid possible distortion 
of the pattern in this and subsequent figures. 

Figure 3 shows a succession of rotating patterns with a scale of about one half-width 
in either the Ax* or y* direction. Associated with these patterns are alternating 
critical points (e.g. Cantwell 1979) located at  Iy*l x 1 on either side of the centreline. 
These points can be identified as centres and saddles and are denoted in figure 3 and 
subsequent figures by the letters C and S respectively. Centres can, to a first 
approximation, be identified with the centroids of the clockwise and counterclockwise 
patterns while saddles lie at the intersections of diverging and converging separatrices 
which separate neighbouring patterns. The diverging separatrices are indicated 
(figure 3 and subsequent figures) by arrows directed away from the saddle points. 
Converging separatrices (not shown) are directed towards the saddle point and are 
approximately orthogonal to the diverging separatrices. 

4.2. Streamlines 

Streamlines shown in figure 4 associated with the velocity-vector pattern in figure 3 
were obtained by calculating the stream function ( Y )  for the same frame of reference 
as figure 3. In this reference frame, ( Y * )  is quasi-steady and is a solution of the 
differential equation d( Y*) = (U*) dy* - ( V * )  dx*. For a streamline (( Y * )  = 
const) to exist, continuity must be satisfied, i.e. a(U*)/ax* should equal 
-a( V*)/ay*. The data for ( U * )  and ( V*)  generally met this condition except in 
the vicinity of the temperature fronts (diverging separatrices) where non-zero values 
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FIGURE 4. Stream functions for the coherent motion relative to an observer moving right to left 
with a convection velocity U,. (Contour step = 0.06.) 

may result from large gradients, with respect to either x* or y*, in these regions and 
perhaps from non-zero values of a( W*)/az*. In  this sense, the streamlines in figure 4 
may be slightly inaccurate near diverging separatrices. 

A first approximation for (Y*)  was calculated using 
Y* X* 

( Y * )  = 1 ((U*)-U,*)dy*- (V*)dx* 

for a particular choice of (z ,* ,y ,*) .  This approximation was then improved by 
comparing a( !?'*)lay* with (U*) - U,* and a( Y*)/ax* with - ( V * ) .  A few iterations 
were required before the initial dependence on (x:, y:) disappeared and acceptable 
convergence for (Y* )  was achieved. As expected, figure 4 reflects the information 
contained in figure 3. Closed contours of ( Y* )  near centres are elliptical and elongated 
in the streamwise direction. The oscillatory behaviour of ( Y * )  on either side of the 
flow centreline reflects the antisymmetry of the selected group of structures. 

Y: s,: 

4.3. Vorticity and strain rate 
In the near-wake investigations, regions surrounding centres have a high coherent 
spanwise vorticity while saddles mark regions which have large coherent strain 
rates. The spanwise component of the vorticity vector is given by a( V*) /ax*-  
a( U*)/ay*, and the coherent strain rate is given by a(U*) /ay*+a(  V*)/ax*.  
These two quantities were calculated from the present data for ( U * )  and ( V * )  and 
the resulting contours for the larger values of each, slightly smoothed, are presented 
in figure 5.  Maxima of the spanwise vorticity occur approximately at centres whereas 
maxima of the strain rate are close to the saddle locations. The position and the shape 
of the vorticity contours are similar to those of the closed (Y* )  contours in figure 4. 
Strain-rate contours (figure 5 )  are elliptical in shape but their major axis is generally 
aligned with the diverging separatrix, in contrast with the nearly streamwise 
alignment of the spanwise vorticity contours. 

4.4. Intermittenc y 
It is of interest to relate the location of coherent structures to the boundary 
between turbulent and non-turbulent fluid. An indication of this boundary is 
provided by contours of (I), the conditionally averaged intermittency function. 
Here, I is defined as unity (turbulent region) when the instantaneous temperature 
exceeds a certain threshold; I is zero (non-turbulent region) otherwise. To estimate 
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FIQURE 5. Contours of spanwise vorticity and strain rate due to  the coherent motion. Plain 
contours: spanwise vorticity, a( V*)/ax* -a( U*)/3y*. Cross-hatched contours: strain rate, 
a(u*>lay*+a( v*)/ax*. 

the threshold, two methods were used. In  one method, I is compared with temperature 
signals such as those shown in figure 2 (the conventional intermittency factor 1 is 
0.5). The threshold is fine tuned until a visually satisfactory comparison is achieved. 
The second method is essentially based on the approach described by Bilger, Antonia 
& Sreenivasan (1976). It consists in plotting the cumulative probability of tempera- 
ture and identifying the threshold with the location a t  which the probability departs 
from the Gaussian behaviour expected for a temperature signal in the non-turbulent 
region. The first method was preferred for relatively small values of Iy*l, typically in 
the range 0.8-1.2, while the second was employed a t  larger Iy*l (1.2-2.0). 

Contours in figure 6(a )  indicate that the magnitude of ( I )  is not very different 
(close to  unity) a t  centres and saddles. This contrasts with the observations of 
Cantwell & Coles (1983) who note that centres can be detected in terms of a maximum 
for ( I )  whereas saddles are close to  a minimum for ( I ) .  Kiya & Matsumura’s (1985) 
( I )  contours exhibit a maximum at centres but the local minimum in ( I )  is slightly, 
but consistently, offset from their reported saddle positions. The present contours are 
more like those of Kiya & Matsumura, except that the centreplane region is fully 
turbulent for the far wake. 

Both the near-wake contours and the present contours suggest that the saddle 
plays an important role in the entrainment of potential fluid. The contours of 
figure 6 (a) suggest that  this entrainment occurs near the downstream boundary of 
a region associated with large spanwise vorticity. The upstream boundary is associated 
with relatively warmer turbulent fluid moving away from the centreline : contours 
for relatively large values of ( I )  are stretched towards large values of Iy*l along the 
diverging separatrix. Contours of (T*) ,  figure 6 ( b ) ,  are, not surprisingly, quite similar 
to the intermittency contours in figure 6(a). Figure 6(b) emphasizes the way warm 
fluid is stretched outwards along the diverging separatrix or temperature front, 
towards the edge of the wake. Similarly, cold fluid is carried along the same front 
towards the centreline. Note also how the constant-temperature lines are closely 
grouped near saddles and widely separated near centres. 

5. Contributions from large-scale and small-scale motions 
In  this section, we focus on the topologies of normal and shear stresses and of the 

temperature variance and heat fluxes associated with the coherent large-scale 
motions and with the small-scale motions. We also present results for the production 
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FIGURE 6. Contours of intermittency and temperature associated with the large-scale motion. (a) 
( I ) .  Except for ( I )  = 0.99, contours are shown at intervals of 0.1. ( b )  (T*). Contours are shown 
at intervals of 0.15. 

and part of the dissipation terms for the kinetic energy and temperature variance 
of the small-scale motion. For reasons given in $3, we use the triple decomposition 
for resolving contributions, from the large-scale and small-scale motions, to the 
normal and shear stresses as well as to the temperature variances and heat fluxes. 

5.1. Velocity and temperature variances 

Results for the normal stresses and temperature variance are shown in figure 7 (large 
scale) and figure 8 (small scale). The largest values of o*', P*2, p*' occur neither at  
centres nor saddles. They are found along the diverging separatrices on either side 
and at approximately the same distance from the saddle point. These extrema are 
generally of similar magnitude except for p*2, where the highest values occur at the 
largest values of Iy*l. Note that the contours of o*2 and p*2 have similar orientations, 
the major axes of the ellipses being inclined at about 45" to the centreline. The major 
axes of the 8*2 contours tend to be almost perpendicular to the centreline. 

There is obviously more dispersion in figure 8 than in figure 7. This is not surprising 
since the quantity (F: )  is formed, using (2), by subtracting p2 from < ( F - F ) 2 ) .  Since 
the population of detections, from which P is determined, is associated with 
structures whose durations and amplitudes may vary slightly, the resulting value of 
( F : )  will inevitably reflect these differences (as noted by Cantwell & Coles 1983). Also, 
as one moves away from the detection instant, i.e. as [Ax*I increases, the accuracy 
of P is impaired (this can be seen in all figures showing contours of quantities 
associated with P )  with further impairment in the accuracy of (F:). 
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FIGURE 7. Contours of normal stresses and temperature variance due to the large-scale motion. (a) 
o*'; ( b )  8*2; (c) p*'. The curves are distributions of Reynolds averaged normal stresses and 
temperature variance. 

Notwithstanding the previous remarks, contours of (U:'), ( V z 2 )  and (T:') 
(figure 8) exhibit significant spatial coherence at  least for a relatively small range of 
1Ax*). We also note that the relative differences between these three sets of contours 
are more important than those in figure 7 .  In particular, there are relatively large 
concentrations of ( U z 2 )  near centres but significant values are also found close to the 
centreline. The peak values in figure 8(a)  are larger than those in figure 7 ( a )  by a 
factor of about 3. For (Vz') ,  the largest concentrations occur inside a narrow region 
on either side of the centreline (figure 8 b ) .  In the case of ( T z 2 )  (figure 8c), the highest 
values reside along the diverging separatrices but non-negligible contributions can 
also be defected near centres. It is of interest to compare the locations and magnitudes 
of the -- contours in fi ures 7 and 8 with those of the Reynolds-averaged distributions 
for U'*2, V * 2  and 3. The latter distributions are shown in figures 7 and 8 to facilitate 
comparison with the contour values. These distributions peak at Jy*l x 0.8, 0 and 
1.2 respectively. The difference in these locations is reflected, qualitatively at  least, 
in the spatial locations of the contours in figure 7 and especially figure 8. 
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FIQURE 8. Contours of normal stresses and temperature variance due to the small-scale motion. 
(a) (U:') ; ( b )  ( V:') ; (c) (c'). The curves are distributions of Reynolds averaged normal stresses 
and temperature variance. 

5.2.  Momentum and heat transport 
Contours of 8*8*, 8*p*, v*p*, not shown here, are very similar in appearance to 
the contours of 8*', 8*2, p*2 (figure 7). Whereas 8*8* contours are larger in 
magnitude near the centreline than in the outer wake, 8*p* and 8*p* contours had 
their largest values in the region Iy*l > 1. The latter observation reflects the relative 
magnitudes of the temperature-variance contours of figure 7 (c). Shear stresses and 
heat fluxes associated with the small-scale motion tend to have larger magnitudes 
near centres although, in the case of (U,* T,*) and ( V,* T,*), significant values are 
observed near saddle points. 

Contributions of the large-scale and small-scale motions to the Reynolds-averaged 
shear stress and heat fluxes were estimated by computing the ratios PT/F'C' and 
F , G , / F G  (see (5)). Only the former values are shown in table 1, since (5) was closely 
verified at  each y*. The large-scale motion makes a larger contribution to "T than 
to u'v', suggesting that the transport of heat is carried out more effectively than 
that of momentum, especially at large y*. Also included in the table are the 

-- 

- 



436 R.  A. Antonia, L. W.  B. Browne, D.  K .  Bisset and L. Fulachier 

Y* 
0 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 

- 
0.25 
0.26 
0.27 
0.28 
0.28 
0.28 
0.28 
0.28 
0.26 
0.27 

m/U" 
0.18 
0.16 
0.23 
0.27 
0.30 
0.30 
0.30 
0.32 
0.36 
0.41 
0.45 

- 

0.37 
0.43 
0.45 
0.45 
0.45 
0.44 
0.45 
0.48 
0.50 
0.53 

F / p  
0.05 
0.05 
0.07 
0.09 
0.09 
0.09 
0.09 
0.10 
0.14 
0.18 
0.20 

- 
P I T  
0.04 
0.10 
0.20 
0.21 
0.22 
0.22 
0.22 
0.22 
0.26 
0.26 
0.25 

Flip5 

0.20 
0.21 
0.23 
0.28 
0.32 
0.33 
0.33 
0.36 
0.40 
0.45 
0.48 

TABLE 1 .  Contribution of the large-scale motion to Reynolds-averaged stresses, heat fluxes and 
temperature variance 

contributions of the large-scale motion to  the Reynolds normal stresses and the 
temperature variance. The contributions to the normal stresses are quite small near 
the centreline and increase only slightly with y*. The contribution from becomes 
significant at large y*, which is consistent with the importance of the coherent heat 
fluxes in this region. 

5.3. Production and dissipation 

Both Cantwell & Coles (1983) and Hayakawa & Hussain (1985) presented estimates 
for the production ( PE) of energy associated with the small-scale motion. This term, 
which is also an energy sink for the large-scale motion, is given by 

The three terms on the right-hand side of (7) were calculated and their normalized 
sum (Pg)  is shown in figure 9(a) .  Although the individual terms are not shown, they 
do not all exhibit the same spatial features as the sum. The first term shows positive 
contributions along the diverging separatrix but marginally smaller negative 
contributions near centres. The second term is largest in a relatively narrow region 
-0.5 5 y* 5 0.5 where ( V : )  is large and the gradient a( V)/ay is also significant. 
The third term provides a positive contribution, comparable in magnitude with that 
of the first term, along the diverging separatrix. When the three terms are added, 
the additive positive contributions along the diverging separatrix overwhelm the 
'sink' of energy which exists near the centres, due mainly to - ( G) a( U)/ax. Since 
the smallest contours are not shown in figure 9 (a ) ,  the negative contributions near 
centres do not appear. 

The production (Po)  of the temperature variance associated with the small-scale 
motion can be obtained by writing the transport equation for (c). The expression 
for (Po)  is 

Each term on the right-hand side was calculated and found to be significantly positive 
along the diverging separatrix. Although the second term exhibits a significant 
positive contribution near centres, due to the concentration of ( V ,  T,) in these 
regions, the normalized sum ( P ; )  (figure 9b) emphasizes mainly the contribution 
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along the diverging separatrix. The behaviour of ( P i )  (figure 9 b )  is similar to that 
of ( P g )  (figure 9a) .  

To obtain some idea of how the dissipations of energy and temperature variance 
associated with the small-scale motion are distributed spatially, one component only 
of these terms was calculated (figure 10). Estimates of ( (aUs/ax)2)  and ( (aT , /ax )2 )  
were obtained by evaluating the right-hand side of the equation 

and using the spacetime transformation a/ax = - a/at. The resulting distribu- 
tion of ((aT,*/acc*)2) (figure lob) shows much the same behaviour as that of ( P i ) ;  
the contours corresponding to large values of ( (aT,*/ax*)2) stretch out in the direction 
of the diverging separatrices to relatively large values of y*. In  the case of 
( (8U,*/i3x*)2), contours do not stretch to large Iy*l but there is a reasonable indication 
that the largest values of this quantity are also directed along the diverging 
separatrices. 

6. Comparison with the organized motion in the near wake 
The most salient features in the previous figures are summarized in figure 11 to 

permit an overview of the flow topology and a comparison with the toplogy of the 
near wake. 

The centres are associated with high coherent spanwise vorticity and lie on a line 
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FIQURE 10. Contours of one component of the dissipation of turbulent energy (a)  and temperature 
variance ( b )  for the small-scale motion. ( a )  ((i3U,*/as*)2); ( b )  ((aT,*/az*)2). 

where the coherent intermittency is nearly unity, i.e. in the fully turbulent part of 
the flow. At centres, high concentrations can be found for some but not all quantities 
associated with the small-scale motion. For example, ( g )  and ( U s  V,) are large there 
but there are also important concentrations of ( Us V , )  in the saddle regions and ( c) 
is especially large in a region close to the centreline. The temperature variance (c) 
is conspicuously high along the diverging separatrices near saddles. Saddles are 
unambiguously identified by large strain rates for the large-scale motion. They are 
also associated with large values of the production of kinetic energy and temperature 
variance of the small-scale motion. Large values of normal and shear stresses, 
temperature variance and heat fluxes associated with the large-scale motion occur 
neither at  centres nor at saddles but in two confined regions of space located on either 
side of a saddle, approximately in the direction of the diverging separatrix. 

There is significant qualitative similarity between the present topology and that 
obtained in the near wake. There are however differences: those listed below relate 
to both the locations of centres and saddles and the domains of importance of some 
of the turbulence quantities that have been considered. 

(i) For the near wake, the difference in mean y-locations of centres and saddles can 
be significant. Near the cylinder, centres are nearly on the centreline (e.g. figure 1) .  
As the distance from the cylinder increases, the lateral distance of the centre from 
the centreline increases. The double row of vortices in the far wake contrasts with 
the single row in the near wake. 

(ii) Instantaneous spanwise vorticity maps presented by Hayakawa & Hussain 
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OURE 11.  Summary sketch of far-wake topology.+, (Y*) = constant; --- , <Z) = 0.99. 
, high vorticity (large scale) ; a, high energy production/dissipation (small scale), high strain 

rate (large scale); m, high normal and shear stresses, heat fluxes and temperature variances (large 
scale). 

(1985) indicate that the vorticity boundary associated with each centre extends 
significantly across the centreline. This is much less pronounced in the far wake. 

(iii) Cantwell & Coles (1983) observed that centres could, inter alia, be identified 
with a peak in the intermittency while saddles appeared to lie on the boundary 
( I )  = 0.5. Neither observation is valid for the far wake (figures 6 and 11) .  

(iv) Cantwell & Coles (1983) noted that a centre could be detected in terms of a 
peak in kinetic energy for the small-scale motion. For the far wake, there are 
important concentrations of normal stresses, associated with the small-scale motion, 
near centres but there are also significant concentrations, especially in (v",), close 
to the flow centreline. This evidence does not fully support Coles' (1982) premise for 
free turbulent shear flows that, following its generation a t  saddles, the small-scale 
turbulence is transported to centres. We also find that ( U s  V,) is more dominant near 
centres than near saddles. This contrasts with Hayakawa & Hussain's (1985) 
near-wake observation that the shear stress associated with the small-scale motion 
was largest at saddle points. 

In both the near wake and the far wake, the saddle region is important in terms 
of both the production of turbulent energy and the entrainment of irrotational 
fluid. Cantwell & Coles (1983) conjectured that turbulence production near saddles 
is 'carried out primarily by stretching of small-scale vorticity oriented along the 
diverging separatrices '. The present production contours (figure 9) are consistent 
with this conjecture and although only one component of the dissipation has been 
measured (figure lo), the implication is that dissipation is large in regions where the 
production is large. The close similarity between production and dissipation of kinetic 
energy and temperature variance for the small-scale motion is not reflected in the 
spatial distributions (figure 8) of (q),  (v",) and (c). Although we have not 
measured ( q) and cannot therefore directly compare (c) with the small-scale 
kinetic energy, similarity between these latter two quantities seems unlikely, 
especially in view of the high concentrations of (c) along diverging separatrices. 
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FIGURE 12. Photograph showing a group of dye bulges with approximately the same streamwise 
spacing as used in the topology. (The velocity-vector plot of figure 3 is reproduced in the upper 
half of the figure.) The flow is right to left (Rd = 430, the central bulge is at z/d z 240). 

7. Relation between topology and the physics of the flow 
An accurate interpretation of figure 11, in terms of the physics of the flow, is not 

possible since what has been presented is a two-dimensional cut through a three- 
dimensional structure. To provide some insight into the nature of this three- 
dimensional structure, we present below some flow-visualization results. 

The photograph shown in figure 12 contains a group of bulges which occur a t  
approximately the same streamwise wavelength as the group of detections used to 
construct the present topology. The bulges are marked by a significant concentration 
of dye (our observations, with the eye following the motion of the bulges, indicated 
that the dye concentrations rotate about an axis in the z-direction, suggesting that 
the bulges have a spanwise vorticity component). The tips of the bulges have a 
tendency to curl over in the direction of the centreline. The back of a bulge can be 
identified with the dye boundary which is at approximately 45" to the centreline. 
Cantwell & Coles (1983), referring to a schlieren photograph of Thomann (1959), 
suggested that the direction of the separatrix was made visible by the presence of 
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strong density gradients. Our dye photographs (e.g. figure 12) support this sugges- 
tion; the association of the dye boundary (high concentration gradients) with the 
diverging separatrix mirrors the association of the temperature front (high tem- 
perature gradients) with the diverging separatrix. 

We have included in figure 12 a suitably scaled representation of the vector plots 
(figure 3) for comparison with the dye photograph. A rigorous comparison is 
obviously not possible since the vector pattern is an average over a large number of 
bulges while the photograph shows streaklines associated with a few bulges. The 
general lack of equivalence, in unsteady flow, between streaklines and streamlines 
is also an obstacle to the comparison. Nevertheless, there is reasonable similarity 
between the two representations in figure 12. Centres in the photograph can be loosely 
identified with the centroids of regions with a large dye concentration. Interestingly, 
the upper dye streakline (introduced in the irrotational flow) is temporarily drawn 
into the central bulge (it can loosely be interpreted as an instantaneous streamline 
or pathline) and curls around so that its slope becomes indeterminate, presumably 
at the centre. Although it is difficult to locate saddle points precisely on the 
photograph in figure 12, it  seems reasonable to identify them with the nearly 
orthogonal intersection of the dye separatricest (e.g. on the back of the central bulge). 
A similar observation was made by Perry, Chong & Lim (1982) with reference to the 
smoke-dye patterns of Zdravkovich (1969). 

Previous studies of the far wake have pointed to the existence of two main types 
of vortical structures: double-roller eddies (e.g. Grant 1958; Payne & Lumley 1967 ; 
Townsend 1976; Mumford 1983; Savill 1983) and spanwise eddies (Keffer 1965; 
Townsend 1979; Mumford 1983). The former are aligned in the plane of main shear 
and contain significant streamwise vorticity while the latter have spanwise vorticity . 
The possibility that these two eddy types are connected so that the spanwise eddies 
join the double-roller eddies at  their outer ends has been mentioned by Roshko 
(1976), Coles (1982) and discussed by Mumford (1983). Some evidence in support of 
this possibility is provided by figure 13. For this photograph, the dye streakline was 
introduced in the tunnel contraction upstream of the cylinder and was drawn into 
the turbulent wake some 180 diameters downstream of the cylinder. At least initially, 
the dye remains relatively organized, delineating a set of bulges on either side of the 
flow centreline. Each bulge comprises a succession of dye loops, the extremities of 
which tend to curl over towards the centreline. Since what is observed is the response 
of the dye to the vortices rather than the vortices themselves, i t  is difficult to associate 
unambiguously the dye loops in the photograph (figure 13) with vortical structures. 
With artistic licence, we have sketched in the inset of the photograph a possible 
vortical structure : such a structure, reminiscent of a hairpin vortex, contains both 
spanwise vorticity associated with its tip, and streamwise vorticity associated with 
its legs. The legs tend to be stretched in a plane aligned, on average, with the direction 
of the diverging separatrix. The vortex model depicted in figure 13 is consistent with 
both Roshko’s (1976) conjecture that double-roller eddies and spanwise eddies are 
two mutually perpendicular views of a vortex loop and with Coles’ (1982) conjecture 
that the characteristic of a turbulent far wake is probably a vortex loop closed across 
the wake. We have not closed the legs of the model vortex as we do not know how 
to do this (the dye information is not helpful since a streakline cannot be broken). 

Although there is general similarity between the topological features of figure 1 1  
and the photographs of figures 12 and 13, i t  is clear that figure 11 represents a 

t This is more easily observed in the near wake (figure 1). 
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FIGURE 13. Single dye streakline entrained into the far wake. The flow is right to left 
(Rd = 280,180 6 x ld  5 300). 

simplified cut through three-dimensional bulges, each of these possibly comprising 
clusters of vortex loops or hairpin vortices. The manner in which the bulges originate, 
the way in which the vortices interact with each other or how they terminate in the 
flow are matters for future investigation. It should also be noted that the present 
measurements and flow visualizations were made a t  small Reynolds numbers. 
Although the flow visualizations of Papailiou & Lykoudis (1974) and Wlezien (1981) 
confirmed the presence of the large structures in the far wake at larger Reynolds 
numbers, it would be useful to extend the present topology to larger Reynolds 
numbers, especially with a view to establishing the importance of the far-wake 
structures with respect to their strength (e.g. energy content) and their contribution 
to momentum and heat transport. Since the Karman street is also expected to decay 
more rapidly as the Reynolds number increases, a higher R, investigation may shed 
some light on the possible interrelation between the near-wake and far-wake regions. 

The support of the Australian Research Grants Scheme is gratefully acknowledged. 
We are grateful to M. Astier and A. Morand for their contributions to the flow 
visualizations. 
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